
© Dr. A.B.M. Toufique Hasan (BUET) 1L 3 T 1, Dept. of ME ME 321: Fluid Mechanics-I (Jan 2025)

ME 321: Fluid Mechanics-I
Prof. Dr. A.B.M. Toufique Hasan

Department of Mechanical Engineering 
Bangladesh University of Engineering and Technology (BUET)

Lecture - 08 (21/06/2025)
Fluid Dynamics: Bernoulli Equation

toufiquehasan.buet.ac.bd
toufiquehasan@me.buet.ac.bd



©  Dr. A.B.M. Toufique Hasan (BUET) 2L 3 T 1, Dept. of ME ME 321: Fluid Mechanics-I (Jan 2025)

Bernoulli Equation

The differential control volume chosen is fixed in 

space and bounded by flow streamlines, is thus an 

element of a stream tube as shown in Figure. The 

length of the control volume is ds. 

Because the control volume is bounded by streamlines, the flow 

across the bounding surfaces occurs only at the end sections. 

These are located at coordinates, s and s+ds, measured along the 

central streamline.

Properties at the inlet are assigned arbitrary symbolic values. 

Properties at the outlet section are assumed to increase by 

differential amounts. Thus at s+ds, the flow speed is assumed to be 

Vs+dVs, and so on.

During the analysis, following assumptions will be 

considered:

(i) Steady flow

(ii) Inviscid flow (no friction, ideal fluid flow, μ = 0)

(iii) Incompressible flow (density is constant) 

(iv) Irrotational flow (zero vorticity)
(v) Flow along a streamline
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Fig. Differential control volume for momentum analysis of flow 

through a stream tube

Differential Control Volume (CV) Analysis

Applying the conservation of mass and momentum 

equations to such a control volume results a simple 

differential equation describing the flow and by 

integrating it along a streamline will give the 

famous Bernoulli equation.
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Differential Control Volume Analysis

a. Continuity equation
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product of two differentials dAdVs is 

insignificant compared to other terms.

continuity equation for the 

differential control volume
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Differential Control Volume Analysis

b. Momentum equation (along steamwise direction)
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Differential Control Volume Analysis

Body force acting along s-direction:
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Differential Control Volume Analysis
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Right hand side of momentum equation:
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Differential Control Volume Analysis
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Dividing both sides by ρA:
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Now, momentum equation (along steamwise direction)
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 Euler differential equation 

for steady inviscid incompressible fluid flow .
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Differential Control Volume Analysis
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Integrate the Euler equation along a streamline:

Bernoulli equation.

(Most famous and mostly used equation in fluid dynamics)

Suffix s can be dropped conveniently (since fluid flows along the streamline)



©  Dr. A.B.M. Toufique Hasan (BUET) 9L 3 T 1, Dept. of ME ME 321: Fluid Mechanics-I (Jan 2025)

Differential Control Volume Analysis
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Pressure head

Velocity head

Potential head

Subjected to the following restrictions in fluid flow:

(i) Steady flow

(ii) Inviscid flow (no friction, ideal fluid flow, μ = 0)

(iii) Incompressible flow (density is constant) 

(iv) Irrotational flow
(v) Flow along a streamline

Although no real flow satisfies all these restrictions 

(especially the second one), we can approximate 
the behavior of many flows.

The Bernoulli equation is a momentum-based force relation. 

It may be interpreted as an idealized energy relation.
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Differential Control Volume Analysis
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Considering any two points along a streamline, 

Bernoulli Equation yields:
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Validity of Bernoulli equation

addition of heat

shaft work
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Static, Dynamic & Stagnation Pressure

V1 ≠ 0 V2 = 0

V4 = 0

V3 ≠ 0
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(Stagnation pressure)

Flow
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total pressure

dynamic pressure

Stagnation Pressure = Static pressure + Dynamic Pressure

(Incompressible flow)
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Stagnation Point

V = 0 V = 0
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HGL & EGL

EGL = Energy Grade Line

HGL = Hydraulic Grade Line

(frictionless flow, no shaft work 
or heat transfer; EGL = const.)
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